Lipschitz Lifelong Reinforcement Learning

نویسندگان

چکیده

We consider the problem of knowledge transfer when an agent is facing a series Reinforcement Learning (RL) tasks. introduce novel metric between Markov Decision Processes and establish that close MDPs have optimal value functions. Formally, functions are Lipschitz continuous with respect to tasks space. These theoretical results lead us value-transfer method for Lifelong RL, which we use build PAC-MDP algorithm improved convergence rate. Further, show experience no negative high probability. illustrate benefits in RL experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable lifelong reinforcement learning

Lifelong reinforcement learning provides a successful framework for agents to learn multiple consecutive tasks sequentially. Current methods, however, suffer from scalability issues when the agent has to solve a large number of tasks. In this paper, we remedy the above drawbacks and propose a novel scalable technique for lifelong reinforcement learning. We derive an algorithm which assumes the ...

متن کامل

PAC-inspired Option Discovery in Lifelong Reinforcement Learning

A key goal of AI is to create lifelong learning agents that can leverage prior experience to improve performance on later tasks. In reinforcement learning problems, one way to summarize prior experience for future use is through options, which are behaviorally extended actions (subpolicies) for how to behave. Options can then be used to potentially accelerate learning in new reinforcement learn...

متن کامل

Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret

Lifelong reinforcement learning provides a promising framework for developing versatile agents that can accumulate knowledge over a lifetime of experience and rapidly learn new tasks by building upon prior knowledge. However, current lifelong learning methods exhibit non-vanishing regret as the amount of experience increases, and include limitations that can lead to suboptimal or unsafe control...

متن کامل

Lifelong Machine Learning Lifelong Machine Learning

Lifelong machine learning (or lifelong learning) is an advanced machine learning paradigm that learns continuously, accumulates the knowledge learned in previous tasks, and uses it to help future learning. In the process, the learner becomes more and more knowledgeable and effective at learning. This learning ability is one of the hallmarks of human intelligence. However, the current dominant m...

متن کامل

Lifelong Learning for Lifelong Employment

SOMEONE ASKED ME recently, “How do we keep 40-year-old software developers employed?” At rst I was puzzled. I had little clue this was a problem. Isn’t there more demand than supply for software developers? However, imagine a software developer who graduates from a good engineering school and gets a good job in a large high-tech company. He marries and raises a family, is good at barbecue, runs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i9.17006